On categories of merotopic, nearness, and filter algebras

author

  • V. Gompa Department Head and Professor of Mathematics, Jacksonville State University, Jacksonville, AL 36265, USA
Abstract:

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the category of filters has a left adjoint.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on categories of merotopic, nearness, and filter algebras

we study algebraic properties of categories of merotopic, nearness, and filter algebras. we show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. the forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

full text

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

full text

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

cluster algebras and cluster categories

these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...

full text

On Triangulated Categories and Enveloping Algebras

By using the approach to Hall algebras arising in homologically finite triangulated categories in [9], we find an “almost” associative multiplication structure for indecomposable objects in a 2-period triangulated category. As an application, we give a new proof of the theorem of Peng and Xiao in [6] which provides a way of constructing all symmetrizable Kac-Moody Lie algebras from two periodic...

full text

Group Actions on Algebras and Module Categories

Let k be a field and A a finite dimensional (associative with 1) k-algebra. By modA we denote the category of finite dimensional left A-modules. In many important situations we may suppose that A is presented as a quiver with relations (Q, I) (e.g. if k is algebraically closed, then A is Morita equivalent to kQ/I). We recall that if A is presented by (Q, I), then Q is a finite quiver and I is a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 05  issue 02

pages  111- 118

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023